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Abstract

We present As-Plausible-as-Possible (APAP) mesh de-
formation technique that leverages 2D diffusion priors to
preserve the plausibility of a mesh under user-controlled de-
formation. Our framework uses per-face Jacobians to rep-
resent mesh deformations, where mesh vertex coordinates
are computed via a differentiable Poisson Solve. The de-
formed mesh is rendered, and the resulting 2D image is used
in the Score Distillation Sampling (SDS) process, which
enables extracting meaningful plausibility priors from a
pretrained 2D diffusion model. To better preserve the
identity of the edited mesh, we fine-tune our 2D diffusion
model with LoRA. Gradients extracted by SDS and a user-
prescribed handle displacement are then backpropagated to
the per-face Jacobians, and we use iterative gradient de-
scent to compute the final deformation that balances be-
tween the user edit and the output plausibility. We eval-
uate our method with 2D and 3D meshes and demonstrate
qualitative and quantitative improvements when using plau-
sibility priors over geometry-preservation or distortion-
minimization priors used by previous techniques.
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Figure 1. APAP, our novel shape deformation method, enables plausibility-aware mesh deformation and preservatlon of fine details of the
original mesh offering an interface that alters geometry by directly displacing a handle (red) along a direction (gray). The improvement
achieved by leveraging a diffusion prior is illustrated by the smooth geometry near the handle in the armchair example (the middle column).
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1. Introduction

For 2D and 3D content, mesh is the most prevalent rep-
resentation, thanks to its efficiency in storage, simplicity
in rendering and also compatibility in common graphics
pipelines, versatility in diverse applications such as de-
sign, physical simulation, and 3D printing, and flexibility
in terms of decomposing geometry and appearance infor-
mation, with widespread adoption in the industry.

For the creation of 2D and 3D meshes, recent break-
throughs in generative models [31, 38, 42, 49, 50, 52, 56,
59] have demonstrated significant advances. These break-
throughs enable users to easily generate content from a text
prompt [38, 42, 50, 56, 59], or from photos [44, 50]. How-
ever, visual content creation typically involves numerous
editing processes, deforming the content to satisfy users’
desires through interactions such as mouse clicks and drags.
Facilitating such interactive editing has remained relatively
underexplored in the context of recent generative tech-
niques.

Mesh deformation is a subject that has been researched
for decades in computer graphics. Over time, researchers
have established well-defined methodologies, characteriz-
ing mesh deformation as an optimization problem that
aims to preserve specific geometric properties, such as the
Mesh Laplacian [35, 36, 54], local rigidity [17, 53], and
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mesh surface Jacobians [2, 12], while satisfying given con-
straints. To facilitate user interaction, these methodologies
have been extended to introduce specific user-interactive
deformation handles, such as keypoints [19, 27, 58], cage
mesh [22, 24, 25, 34, 60, 65], and skeleton [4, 63, 64], with
the blending functions defined based on the preservation of
geometric properties.

Despite the widespread use of classical mesh deforma-
tion methods, they often fail to meet users’ needs because
they do not incorporate the perceptual plausibility of the
outputs. For example, as illustrated in Fig. 1, when a user
intends to drag a point on the top of a table image, the classi-
cal deformation technique may introduce unnatural bending
instead of lifting the tabletop. This limitation arises because
deformation techniques solely based on geometric proper-
ties do not incorporate such semantic and perceptual pri-
ors, resulting in the mesh editing process becoming more
tedious and time-consuming.

Recent learning-based mesh deformation techniques [2,
22,27,37,55, 63, 65] have attempted to address this prob-
lem in a data-driven way. However, they are also limited
by relying on the existence of certain variations in the train-
ing data. Even recent large-scale 3D datasets [6—8, 62] have
not reached the scale that covers all possible visual content
users might intend to create.

To this end, we introduce our novel mesh deforma-
tion framework, dubbed APAP (As-Plausible-As-Possible),
which exploits 2D image priors from a diffusion model
pretrained on an Internet-scale image dataset to enhance
the plausibility of deformed 2D and 3D meshes while pre-
serving the geometric priors of the given shape. Recently,
score distillation sampling (SDS) [42] has demonstrated
great success in generating plausible 2D and 3D content,
such as NeRF [23, 28, 68] and vector images [18, 21], us-
ing the distilled 2D image priors from a diffusion model.
We incorporate these diffusion-model-based 2D priors into
the optimization-based deformation framework, achieving
the best synergy between geometry-based optimization and
distilled-prior-based optimization.

To achieve this optimal synergy between geometric and
perceptual priors within a unified framework, we introduce
an alternative optimization approach. At each step, we first
update the Jacobian of each mesh face using the SDS loss
and user-provided constraints. Subsequently, the mesh ver-
tex positions are recalculated by solving Poisson’s equation
with the updated face Jacobians. The direct application of
the 2D diffusion prior via SDS, however, tends to compro-
mise the identity of the given objects—an essential aspect in
deformation. We thus enhance the identity awareness of the
diffusion prior by finetuning it with the provided source im-
age. The model is integrated into our two-stage pipeline that
initiates deformation without the perceptual prior (SDS)
and refines it with SDS and the given constraints afterward

to create deformations that adhere to user-defined editing
instructions while remaining visually plausible.

In experiments, we examine APAP using APAP-
BENCH consisting of 3D and 2D triangular meshes and edit-
ing instructions. The proposed method produces plausible
deformations of 3D meshes compared to its baseline [53]
based exclusively on a geometric prior. Evaluation in the
task of 2D mesh editing further verifies the effectiveness of
APAP as illustrated by the highest k-NN GIQA score [13]
in quantitative analysis, and the higher preference over the
baseline in a user study.

2. Related Work
2.1. Geometric Mesh Deformation

Mesh deformation has been one of the central problems in
geometry processing and is thus addressed by a wide range
of techniques. Cage-based methods [24, 25, 34, 60] let
users alter meshes by manipulating cages enclosing them,
calculating a point inside as a weighted sum of cage ver-
tices. Skeleton-based approaches [4, 61, 63, 64] offer an-
imation control by mapping surface points to underlying
joints and bones, ideal for animating human/animal-like fig-
ures. Unlike the previous techniques that require the man-
ual cage or skeleton construction, biharmonic coordinates-
based methods [19, 58] automate establishing mappings
from control points to vertices by formulating optimization
problems. Other types of works instead allow users to ma-
nipulate shapes via direct vertex displacement while impos-
ing constraints on local surface geometry, including rigid-
ity [17, 53] and Laplacian smoothness [35, 36, 54]. Such
hand-crafted deformation priors often lack consideration of
visual plausibility, necessitating careful control point place-
ment and iterative manual refinement to achieve satisfactory
results.

2.2. Data-Driven Mesh Deformation

Data-driven approaches to mesh deformation [2, 22, 27,
37, 55, 63, 65] learn from shape collections, utilizing neu-
ral networks to infer parameters for classical deformation
techniques, such as cage vertex coordinates and displace-
ments [65], keypoints [22, 27, 58], subspaces of keypoint
arrangements [37], differential coordinates [2], etc. How-
ever, these methods assume the availability of large-scale
category-specific shape collection [22, 27, 58, 63, 65] or re-
quire dense correspondences between them [2, 55], limiting
their applicability to new, out-of-sample shapes. We instead
propose to directly mine deformation priors from pretrained
diffusion models. Leveraging a generic (category-agnostic)
image generative model trained on an Internet-scale image
dataset, we devise a method that easily generalizes to novel
2D and 3D shapes while lifting the requirement for shape
collections.



2.3. Pretrained 2D Priors for Shape Manipulation

Image analysis [43] and generation [3, 33, 46, 66] tech-
niques can serve as effective visual priors for image editing
tasks [5, 15, 51, 57, 67]. In addition, recent work [11, 47]
and their adaption [10], enable personalized image genera-
tion and editing by learning a text embedding [11] or fine-
tuning additional parameters, such as LoRA [16] to pre-
serve and replicate the identities of given exemplars dur-
ing editing. One interesting work is DragDiffusion [51],
akin to DragGAN [40], which introduces a drag-based user
interface for image editing through the manipulation of la-
tent representations. However, it is not extendable to the
deformation of parametric images, such as 2D meshes,
and also 3D shapes. Another interesting line of works
[12, 26, 39] extends the idea further to manipulate shapes by
propagating image-based gradients to the underlying shape
representations. They maximize CLIP [43] similarity be-
tween the renderings and text prompts to either add geo-
metric textures [39], jointly update both vertices and tex-
ture [26], or deform a shape parameterized by per-triangle
Jacobians [12]. In contrast to such text-driven editing tech-
niques, we build on Score Distillation Sampling (SDS) [42]
to enable direct manipulation of shapes via handle dis-
placement, ensuring visual plausibility. While the tech-
nique is prevalent in various problems ranging from text-to-
3D [38, 42, 50, 56, 59], image editing [14] and neural field
editing [68], it has not been adopted for shape deformation.

3. Method

We present APAP, a novel handle-based mesh deformation
framework capable of producing visually plausible defor-
mations of either 2D or 3D triangular meshes. To achieve
this goal, we integrate powerful 2D diffusion priors into a
learnable Jacobian field representation of shapes.

We emphasize that leveraging 2D priors, such as la-
tent diffusion models (LDMs) [46] trained on large-scale
datasets [48], for shape deformation poses challenges that
require meticulous design choices. The following sections
will delve into the details of shape representation (Sec. 3.1)
and diffusion prior (Sec. 3.2), offering a rationale for the
design decisions underpinning our framework (Sec. 3.3).

3.1. Representing Shapes as Jacobian Fields

Let My = (Vy,Fp) denote a source mesh to be de-
formed, represented by vertices Vo € RY*3 and faces
Fy, € RF*3. Users are allowed to select a set of ver-
tices used as movable handles designated by an indicator
matrix K;, € {0,1}"»*V. We also require users to se-
lect a set of anchors, represented as another indicator ma-
trix K, € {0, 1}Va *V to avoid trivial solutions (i.e., global
translations). Then, the handle and anchor vertices become
Vh = KhV() and Va = KaVO.

Our framework also expects a set of vectors D), €
RV»*3 that indicate the directions along which the handles
will be displaced. Furthermore, we let T}, = V, + Dy, and
T, = V, denote the target positions of the user-specified
handles and anchors, respectively.

In this work, we employ a Jacobian field Jo = {Jo ¢|f €
Fo}, a dual representation of My, defined as a set of per-
face Jacobians Jo ; € R3*3 where

Jo,s = Vs Vo, (1)

and V is the gradient operator of triangle f.

Conversely, we compute a set of deformed vertices V*
from a given Jacobian field J by solving a Poisson’s equa-
tion

V* = argmin |LV — V7 AJ|?, 2
%

where V is a stack of per-face gradient operators, A €
R3F >3 s the mass matrix and L € RY*" is the cotangent
Laplacian of My, respectively. Since L is rank-deficient,
the solution of Eqn. 2 cannot be uniquely determined un-
less we impose constraints. We thus consider a constrained
optimization problem

V* = argmin |[LV — VT AJ||? + \|K,V — T,|1%, (3)
v

where A € R7T is a weight for the constraint term. Note
that we solve Eqn. 3 with the user-specified anchors as con-
straints to determine V*.

Taking the derivative with respect to V, the problem in
Eqn. 3 turns into a system of equations

LTL+ MKIK,) V=LTV AT+ XKIT,, ¥

which can be efficiently solved using a differentiable
solver [2] implementing Cholesky decomposition.

We let g denote a functional representing the afore-
mentioned differentiable solver for notational convenience,
V* =g (J,K,,T,). Since g is differentiable, we can de-
form M by propagating upstream gradients from various
loss functions to the underlying parameterization J. For in-
stance, one may impose a soft constraint on the locations of
selected handles during optimization with the objective of
the form:

Lh - ||K}LV* - Th||2- (5)

We will discuss how such a soft constraint can be blended
into our framework in Sec. 3.3. Next, we describe how to
incorporate a pretrained diffusion model as a prior for visual
plausibility.
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Figure 2. The overview of APAP. APAP parameterizes a triangular mesh as a per-face Jacobian field that can be updated via gradient-
descent. Given a textured mesh and user inputs specifying the handle(s) and anchor(s), our framework initializes a Jacobian field as a
trainable parameter. During the first stage, the Jacobian field is updated via iterative optimization of Ly, a soft constraint that initially
deforms the shape according to the user’s instruction. In the following stage, the mesh is rendered using a differentiable renderer R and
the rendered image is provided as an input to a diffusion prior finetuned with LoRA [16] that computes the SDS loss Lsps. The joint
optimization of £, and Lsps improves the visual plausibility of the mesh while conforming to the given edit instruction.

3.2. Score Distillation for Shape Deformation

While traditional mesh deformation techniques make varia-
tions that match the given geometric constraints, their lack
of consideration on visual plausibility results in unrealistic
shapes. Motivated by recent success in text-to-3D litera-
ture, we harness a powerful 2D diffusion prior [46] in our
framework as a critic that directs deformation by scoring the
realism of the current shape.

Specifically, we distill its prior knowledge via Score Dis-
tillation Sampling (SDS) [42]. Let J denote the current Ja-
cobian field and V* be the set of vertices computed from J
following the procedure described in Sec. 3.1.

We render M* = (V*,F) from a viewpoint defined by
camera extrinsic parameters C using a differentiable ren-
derer R, producing an image Z = R (M*, C). The diffu-
sion prior €4 then rates the realism of Z, producing a gradi-
ent

7
VaLsos (6.T) = Be [w(1) (6 (z0,0) — ) 2| 6)

where ¢ ~ U (0,1), e ~ N (0,I), and z, is a noisy latent
embedding of Z. The propagated gradient alters the geom-
etry of M by modifying J.

To increase the instance-awareness of the diffusion
model, we follow recent work [47, 51] on personalized im-
age editing and finetune the model using LoRA [16]. In
particular, we first render M from n different viewpoints
to obtain a set Z = {Zy,...,Z,} of training images and
inject additional parameters to the model, resulting in an
expanded set of network parameters ¢’. The parameters are
then optimized with a denoising loss [46]

L=Eicq ey (ze:9,t) — €]’], (7)

where z; denotes a latent of a training image perturbed with
noise at timestep t.

The finetuned diffusion prior, together with a learnable
Jacobian field representation of the source mesh M, com-

prises the proposed framework described in the following
section.

3.3. As-Plausible-As-Possible (APAP)

APAP tackles the problem of plausibility-aware shape de-
formation by harmonizing the best of both worlds: a learn-
able shape representation founded on classical geometry
processing, robust to noisy gradients, and a powerful 2D
diffusion prior finetuned with the image(s) of the source
mesh for better instance-awareness.

We provide an overview of the proposed pipeline in
Fig. 2 and the algorithm in Alg. 1. We will delve into details
in the following. Provided with a textured mesh M, han-
dles K, anchors K, as well as their target positions T},
and T, as inputs, APAP yields a plausible deformation M
of M that conforms to the given handle-target constraints.
Before deforming M, we render M from a single view in
the case of 2D meshes and four canonical views (i.e., front,
back, left, and right) for 3D meshes and use the images to
finetune Stable Diffusion [46] by optimizing LoRA [16] pa-
rameters injected to the model (the red line in Fig. 2). Si-
multaneously, APAP computes the Jacobian field J, of the
input mesh M and initializes it as a trainable parameter J.

APAP deforms the input mesh through two stages. In the
FirstStage, it first deforms the input mesh according
to instructions from users without taking visual plausibility
into account. The subsequent SecondStage integrates
a 2D diffusion prior into the optimization loop, simultane-
ously enforcing user constraints and visual plausibility.

At every iteration of the FirstStage illustrated as
the blue box in Fig. 2, we compute the vertex positions
V* corresponding to the current Jacobian field J by solv-
ing Eqn. 3 using the anchors specified by K, as hard con-
straints. Then, we compute the soft constraint £, defined as
Eqn. 5 that drags a set of handle vertices K; V* toward the
corresponding targets T',. The interleaving of differentiable
Poisson solve and optimization of L via gradient-descent



Algorithm 1 As-Plausible-As-Possible

Parameters: g, R, ¢, v, M, N
Inputs: M, = (Vo,Fo), Ko, K, T, T, {Ci}i
Output: M

procedure FIRSTSTAGE(J, K, K}, T, T}, 9)
fori=1,2,...,M do
V*+—g(J, K, T,)
J—J—ViLy (VF Ky, Th)
end for
return J
end procedure
procedure SECONDSTAGE(J, Fy, K., K, Ty, T}, g,
¢, {Ci})
fori=1,2,..., Ndo
V* 4 g(J,K,, T,)

> Solving Eqn. 4

> Solving Eqn. 4

M* — (V*, Fo)
C~U{C;}) > Viewpoint Sampling
T+ R(M* C) > Rendering
J—J- ’VVJ (’CSDS (¢7I) +Ln (V*v Kh, Th))
end for
return J

end procedure

¢ < LORA(¢, Mo, R, {C;})

J ¢ {Jo\f € Fo)

J + FIRSTSTAGE(J, K, K}, Ty, Th, 9)

J < SECONDSTAGE(J, Fo, K., K}, T,, Th, g, b,
{Ci})

V — g (J7 Ka7 Ta)

M+ (V,Fy)

return M

is repeated for M iterations. This progressively updates J,
treated as a learnable black box in our framework, deform-
ing M. Consequently, the edited mesh M* = (J, Fy) fol-
lows user constraints at the cost of the degraded plausibility,
mitigated in the following stage through the incorporation
of a diffusion prior.

The result of FirstStage then serves as an initializa-
tion for the SecondStage, illustrated as the box in
Fig. 2 guided by plausibility constraint Lsps. Unlike the
FirstStage where the update of J was purely driven
by the geometric constraint £, we aim to steer the op-
timization based on the visual plausibility of the current
mesh M*. To achieve this, we render M* using a differen-
tiable renderer R using the same viewpoint(s) from which
the training image(s) for finetuning was rendered. When
deforming 3D meshes, we randomly sample one viewpoint
at each iteration. The rendered image 7 is used to evaluate
Lsps which is optimized jointly with £}, for IV iterations.
The combination of geometric and plausibility constraints

improves the visual plausibility of the output while encour-
aging it to conform to the given constraints.

We note that the iterative approach in the FirstStage
leads to better results than alternative update strategies such
as deforming the source mesh M by minimizing ARAP
energy [53] or, solving Eqn. 3 using both K;, and K, as
hard constraints. In our experiments (Sec. 4), we show that
both methods produce distortions that cannot be corrected
by the diffusion prior in the subsequent stage. Specifically,
directly solving Eqn. 3 using all available constraints only
yields the least squares solution V* without updating the
underlying Jacobians J, resulting in the aforementioned dis-
tortions.

4. Experiments

We evaluate APAP in downstream applications involving
manipulation of 3D and 2D meshes.

4.1. Experiment Setup

Benchmark. To evaluate the plausibility of a mesh de-
formation we propose a novel benchmark APAP-BENCH
of textured 3D and 2D triangular meshes spanning both
human-made and organic objects annotated with handle ver-
tices and their editing directions, and anchor vertices. The
set of 3D meshes, APAP-BENCH 3D, is constructed using
meshes from ShapeNet [6] and Genie [1]. The meshes are
normalized to fit in a unit cube. Each mesh is manually an-
notated with editing instructions, including a set of anchors,
handles, and corresponding targets to simulate editing sce-
narios. APAP-BENCH offers another subset called APAP-
BENCH 2D, a collection of 80 textured, planar meshes of
various objects, to facilitate quantitative analysis and user
study described later in this section. To create APAP-
BENCH 2D, we first generate 2 images of real-world ob-
jects for each of the 20 categories using Stable Diffusion-
XL [41]. We then extract foreground masks from the gen-
erated images using SAM [30] and sample pixels that lie on
the boundary and interior. The sampled pixels are used for
Delaunay triangulation, constrained with the edges along
the main contour of the masks, that produces 2D triangular
meshes with texture. We assign two handle and anchor pairs
to each mesh that imitate user instructions. For evaluation
purposes, we populate the reference set by sampling 1, 000
images for each object category using Stable Diffusion-XL.
The generated images are used to evaluate a perceptual met-
ric to assess the plausibility of 2D mesh editing results as
described in Sec. 4.3.

Baselines. We compare our method (APAP) and As-
Rigid-As-Possible (ARAP) [53] since it is one of the widely
used mesh deformation techniques that permits shape ma-
nipulation via direct vertex displacement. Throughout the
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Figure 3. Qualitative results from 3D shape deformation. We visualize the source shapes and tei dermations mad sing ARAP [53]
and ours by following the instructions each of which specifies a handle (red), an edit direction denoted with an arrow (gray), and an anchor
(green). We showcase the rendered images captured from two different viewpoints, as well as one zoom-in view highlighting local details.

experiments, we use the implementation in 1ibigl [20]
with default parameters.

Evaluation Metrics. In 2D experiments, we conduct
quantitative analysis based on k-NN GIQA score [13] as
an evaluation metric to assess the plausibility of instance-
specific editing results. The metric quantifies the perceptual
proximity between the edited image and its &k nearest neigh-

bors in the reference set included in APAP-BENCH 2D. As
our objective is to make plausible variations of 2D meshes
via deformation, an edited object should remain perceptu-
ally similar to other objects in the same category. We use
k = 12 throughout the experiments.

4.2. 3D Shape Deformation

Qualitative Results. We showcase examples of 3D shape
deformation where each deformation is specified by a han-



Figure 4. Failure cases of DragDiffusion. DragDiffusion [51]
can easily compromise the identity of edited instances as it manip-
ulates their latents without an explicit parameterization, the iden-
tity of instances can be broken during editing.

dle (red), an edit direction (gray), and an anchor ( ).
As shown in Fig. 3, APAP is capable of manipulating
3D shapes to improve visual plausibility which is not
achievable by solely relying on geometric prior such as
ARAP [53]. For instance, given a user input that drags
a handle on one blade of an axe (the first row) along an
arrow, APAP simultaneously expands both blades of the
axe whereas ARAP [53] produces distortions near the head.
Similar examples that demonstrate symmetry-awareness of
APAP can be found in other cases such as a car (the sec-
ond row), and an owl (the sixth row) where a user lifts only
one side of the shape upward and the symmetry is recovered
by APAP which cannot be achieved by ARAP [53]. Also,
note that APAP is capable of making a smooth articulation
at the leg of the wolf (the fourth row) by adjusting the over-
all posture in comparison to ARAP which creates an excess
bending.

4.3. 2D Mesh Editing

Qualitative Evaluation. We present qualitative results
using the baselines and our method in Fig. 5. Each row
shows two different results obtained by editing an image
based on a handle moved from the original position (red)
along a direction indicated by an arrow (gray) while fixing
an anchor ( ), similar to the 3D experiments discussed
in the previous section.

As shown in Fig. 5, ARAP [53] enforces local rigidity
and often results in implausible deformations. For example,
it does not account for the mechanics of the human body
and introduces an unrealistic articulation of a human arm
(the fourth row). In addition, it twists the body of a sports
car (the fifth row). Both of them originate from the lack
of understanding of the appearance of objects. APAP alle-
viates this issue by incorporating a visual prior into shape

Methods | k-NN GIQA (x10~2) 1
ARAP [53] 4.753
DragDiffusion [51] 4.545
Ours (L, Only) 4.797
Ours (ARAP Init.) 4.740
Ours (Poisson Init.) 4316
Ours 4.887

Table 1. Quantitative analysis for 2D mesh editing. APAP
outperforms its baselines in quantitative evaluation using k-NN
GIQA [13].

Methods | Preference (%) 1
ARAP [53] 40.83
Ours 59.17

Table 2. User study preference for 2D image editing. In a user
study targeting users on Amazon Mechanical Turk (MTurk), the
results produced using ours were preferred over the outputs from
the baseline.

deformation producing a bending near the elbow and pre-
serving the smooth silhouette of the car, respectively.

While APAP is designed for meshes not images, we pro-
vide an additional qualitative comparison against DragDif-
fusion [51], an image editing technique that operates in
pixel space, to demonstrate the effectiveness of mesh-based
parameterization in applications where identity preservation
is crucial. As shown in Fig. 4, DragDiffusion [51] may cor-
rupt the identity of the instances depicted in input images
during the encoding and decoding procedure. APAP, on
the other hand, makes plausible variations of the given ob-
jects while maintaining their originality, benefiting from an
explicit mesh representation it is grounded.

Quantitative Evaluation. Tab. 1 summarizes Ak-NN
GIQA scores measured on the outputs from ARAP [53] (the
first row) and APAP (the sixth row) using APAP-BENCH
2D. As shown, APAP demonstrates superior performance
over ARAP [53]. This again verifies the observations from
qualitative evaluation where ARAP [53] introduces distor-
tions that harm visual plausibility. As in qualitative eval-
uation, we also report the k-NN GIQA score of DragDif-
fusion [51], degraded due to artifacts caused during direct
manipulation of latents.

User Study. We further conduct a user study for a more
precise perceptual analysis. We follow Ritchie [45] and
recruit participants on Amazon Mechanical Turk (MTurk).
Each participant is provided with a set of 20 randomly sam-
pled images of the source meshes paired with editing results
of ARAP [53] and APAP. To check whether the response
from a participant is reliable we present 5 vigilance tests
and collect 102 responses from the participants who passed
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Figure 5. Qualitative results from 2D mesh deformation. 2D meshes are edited using ARAP [53] and the proposed method following
the edit instruction consisting of a handle (red), a target direction (gray), and an anchor (green). We showcase the rendered images of the

edited meshes, as well as a zoom-in view highlighting local details.

the vigilance test.

We instructed participants to select the most anticipated
outcome when the displayed source image is edited by the
dragging operation visualized as an arrow. We have pro-
vided detailed settings and examples of the user study en-
vironment and statistical methods in the appendix. Tab. 2
shows a higher preference of the participants on our method
over ARAP [53] implying that our method produces more
visually plausible deformations by utilizing a visual prior.

Ablation Study. Tab. 1 summarizes the impact of differ-
ent initialization strategies in the first stage on k-NN GIQA
score. As reported in the third row of the table, optimiz-
ing £}, that aims to exclusively satisfy geometric constraints
leads to unnatural distortions. We provide a qualitative
comparison in the the appendix.

While designing the algorithm illustrated in Alg. 1, we
considered other options for FirstStage. Instead of op-
timizing L, to initially deform a shape, we used a shape
produced by ARAP [53] or by solving a Poisson’s equation
constrained not only on anchor positions but also on handles
at their target positions reached by following the given edit
directions. We report k-NN GIQA scores of the alternatives
in the fourth and fifth row of Tab. 1, respectively. Both ini-
tialization strategies degrade the plausibility of results due

to large distortions introduced by either solely enforcing lo-
cal rigidity or, finding least square solutions without updat-
ing Jacobians. This poses a challenge to the diffusion prior,
making it struggle to induce meaningful update directions
when provided with renderings with noticeable distortions,
which can be found in qualitative analysis in the appendix.

5. Conclusion

We presented APAP, a novel deformation framework that
tackles the problem of plausibility-aware shape deformation
while offering intuitive controls over a wide range of shapes
represented as triangular meshes. To this end, we carefully
orchestrate two core components, a learnable Jacobian-
based parameterization that originates from geometry pro-
cessing and powerful 2D priors acquired by text-to-image
diffusion models trained on Internet-scale datasets. We as-
sessed the performance of the proposed method against an
existing geometric-prior-based deformation technique and
also thoroughly investigated the significance of our design
choices through experiments.
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Appendix

In the following, we first describe implementation details of our main pipeline (Sec. A.1) and details of APAP-BENCH con-
struction (Sec. A.2). We also provide the exact question given to user study participants, as well as an example questionnaire
(Sec. A.3). Furthermore, we summarize additional experimental results including an ablation study for 2D mesh editing
based on qualitative results (Sec. A.5) and additional results for 3D shape deformation (Sec. A.4).

A.1l. Implementation Details

We provide additional implementation details of Alg. 1. We used a modified version of the differentiable Poisson solver from
[2], denoted by g in Alg. 1, and nvdiffrast [32] when implementing the differentiable renderer R in our pipeline. We
render 2D/3D meshes at a resolution of 512 x 512.

When editing 2D meshes, we optimize Ly, for M = 300 iterations in the First St age and jointly optimize L, and Lsps
for N = 700 iterations in the SecondStage. For experiments involving the optimization of 3D meshes with increased
geometric complexity, we use M = 300 and N = 1000 for each stage, respectively. We use ADAM [29] with a learning rate
v = 1 x 10~3 throughout the optimization. We use the Classifier-Free Guidance (CFG) scale of 100.0 and randomly sample
t € [0.02,0.98] when evaluating Lspg following DreamFusion [42].

We use a script from diffusers [9] to finetune Stable Diffusion [46] with LoRA [16]. We employ
stabilityai/stable-diffusion-2-1-base asour base model and augment its cross-attention layers in the U-Net
with rank decomposition matrices of rank 16. For the task of 2D mesh editing, we train the injected parameters for 60 itera-
tions, utilizing a rendering of a mesh as a training image. In the 3D shape deformation, where renderings from 4 canonical
viewpoints are available, we finetune the model for 200 iterations. In both cases, we use the learning rate v = 5 X 104,

A.2. Details of APAP-BENCH

Image Generation. For evaluation purposes, we build APAP-BENCH 2D by generating 2 images of real-world objects
for each of the 20 categories using Stable Diffusion-XL [41] as noted in the main paper. We segment the foreground objects
from the generated images and run Delaunay triangulation to populate a collection of 2D meshes. When generating the
images, we use the following template prompt "a photo of [category name] in a white background"
for all categories to facilitate foreground object segmentation. Tab. A3 summarizes the list of categories. Note that the list
includes both human-made and organic objects that can be easily found in the daily environment to test the generalization
capability of a deformation technique to various object types.

Human-Made Organic
backpack flying bird
bike side view of cat
chair side view of dog
high-heeled shoes runway model
purse sitting bird
side view of car standing cheetah
sneakers standing dragon
table standing raccoon
airplane standing sheep
standing white duck
starfish

Table A3. Object categories of 2D meshes in APAP-BENCH 2D. APAP-BENCH 2D includes 2D triangle meshes depicting various
objects, including both human-made and organic objects.

Handle and Anchor Assignment. We manually assign two handle and anchor pairs to each mesh to imitate user instruc-
tions. Specifically, we choose vertices on the shape boundaries instead of internal vertices to induce deformations that alter
object silhouettes. For instance, users would try to drag the bottom of a backpack downward to enlarge the shape, instead of
dragging an interior point which may flip triangles, distorting the appearance. As an anchor, we use the vertex closest to the
center of mass of each mesh.

In experiments using APAP-BENCH 3D and APAP-BENCH 2D, we note that utilization of neighboring vertices of the
given handles and anchors during deformation helps retain smooth geometry near the handle. Therefore, we additionally
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sample vertices near the handles and anchors that lie in the sphere of radius » = 0.01 and denote the extended sets of handles
and anchors region handles and region anchors, respectively. We use region anchors and a single handle for 3D experiments
and region anchors and region handles for 2D cases. Note that we use the same sets of handles and anchors when deforming
shapes with our baselines for fair comparisons.

A.3. Details of User Study

In Sec. 4 of the main paper, we reported the preference statistics collected from 102 user study participants who passed
the vigilance tests. We provide additional details of the user study in the following. We instructed participants to select
the most anticipated outcome when the displayed source image is edited by the dragging operation visualized as an
arrow with the question: "A visual designer wants to modify the object by clicking on a
red point and dragging it in the direction of the arrow. Please choose a result
that best satisfies the designer’s edit, while retaining the characteristics and
plausibility of the object."

Fig. A6 (left) shows an example of a questionnaire provided to the participants. For vigilance tests, we included an editing
result from DragDiffusion [51] depicting an object irrelevant to the source image in each question. The participants were
asked to answer the same question. We illustrate an example questionnaire of a vigilance test in Fig. A6 (right).

A visual designer wants to modify the object by dlicking on a red point and dragging it in the direction of the arrow. Please choose a result that best satisfies the A visual designer wants to modify the object by clicking on a red point and dragging it in the direction of the arrow. Please choose a result that best satisfies the
designer’s edit, while retaining characteristics and plausibiiity of the object designer's edit, while retaining characteristics and plausibilty of the object.

JER +

Choose A Choose B Choose A Choose B

N

Figure A6. Examples of questionnaires displayed during the user study. During the user study, we asked the participants to evaluate
20 different result pairs from ARAP [53] and ours as shown on the left. To check whether a participant is focusing on the user study, we
included 5 items for the vigilance test. As shown on the right, a question for the vigilance test includes an image of an object that is not
related to the source image.

A 4. Additional Qualitative Results for 3D Shape Deformation

Fig. A7 summarizes outputs of 3D shape deformation with additional results. As reported, ARAP [53] only enforces local
rigidity and hence cannot produce smooth deformations intended by users. In the ninth row, ARAP [53] introduces a pointy
end given an editing instruction that drags the bottom of a doll downward. Ours, however, elongates the entire geometry
smoothly, producing a more visually plausible deformation. Another example displayed in the tenth row shows similar
behaviors of ARAP [53] and ours, respectively. Here, unlike ARAP [53], the proposed method adjusts the overall proportion
of the statue as the handle located at the tail is translated, while preserving the smooth and round geometry near the handle.

A.S5. Ablation Study for 2D Mesh Editing

In this section, we provide qualitative results from the ablation study to validate the impact of each component on the
plausibility of editing results. In Fig. A8, we summarize the results obtained by (1) optimizing only L}, (2) £, and Lgps
without LoRA finetuning, (3) skipping the FirstStage, (4) using ARAP initialization, (5) using Poisson initialization,
and (6) Ours.

As mentioned in the main paper, optimizing only £}, (the second column) either distorts texture (the fifth row) or inflates
or shrinks other parts of the given shape (the seventh and twelfth row). This demonstrates the necessity of a visual prior
during deformation. Also, we observe the cases where skipping the FirstStage (the fourth column) does not lead to
intended deformation as our diffusion prior is reluctant to modify shapes from their original states (the first, second, and fifth
row). On the other hand, deformations initialized with the meshes produced by ARAP [53] (the fifth column) or Poisson
solve (the sixth column) suffer from distortions that could not be resolved by optimizing Lsps in the SecondStage.
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View 1 View 2 View 2 (Zoom In)
Source ARAP [53] Ours Source ARAP [53] Source ARAP [53] Ours

e

e R Qo= W Q.

Figure A7. Additional qualitative results from 3D shape deformation. We visualize the source shapes and their deformations made
using ARAP [53] and ours by following the instructions each of which specifies a handle (red), an edit direction denoted with an arrow
(gray), and an anchor (green). We showcase the rendered images captured from two different viewpoints, as well as one zoom-in view
highlighting local details.
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Figure AS8. Ablation study for 2D mesh editing. We examine the impact of each design choice on deformation outputs, including the
use of diffusion prior (the second column), LoRA finetuning (the third column), two-stage pipeline (the fourth column), and initialization
strategies during the FirstStage (the fifth and sixth column).

Source Ly, Only No LoRA [16] SecondStage Only ARAP Init. Poisson Init. Ours

28 8
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Figure AS8. Ablation study for 2D mesh editing. We examine the impact of each design choice on deformation outputs, including the
use of diffusion prior (the second column), LoRA finetuning (the third column), two-stage pipeline (the fourth column), and initialization
strategies during the FirstStage (the fifth and sixth column).

Source Ly, Only No LoRA [16] SecondStage Only ARAP Init. Poisson Init. Ours
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